skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khair Al Shamaileh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work proposes the use of machine learning (ML) as a candidate for the detection of various types of message injection attacks against automatic dependent surveillance-broadcast (ADSB) messaging systems. Authentic ADS-B messages from a high-traffic area are collected from an open-source platform. These messages are combined with others imposing path modification, ghost aircraft injection, and velocity drift obtained from simulations. Then, ADS-B-related features are extracted from such messages and used to train different ML models for binary classification. For this purpose, authentic ADS-B data is considered as Class 1 (i.e., no attack), while the injection attacks are considered as Class 2 (i.e., presence of attack). The performance of the models is analyzed with metrics, including detection, misdetection, and false alarm rates, as well as validation accuracy, precision, recall, and Fl-score. The resulting models enable identifying the presence of injection attacks with a detection rate of 99.05%, and false alarm and misdetection rates of 0.76% and 1.10%, respectively. 
    more » « less